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Summary. The use of biorthogonal valence bond reference functions in evaluat- 
ing the correlation energy is investigated. Since the method is not variationally 
bound some care must be taken in defining the reference state to ensure that the 
variational bound is not violated, some discussion is given to this matter. The 
procedure adopted here is a matrix element driven configuration interaction 
scheme. To reduce the computational labour involved, a configuration selection 
criterion is introduced. The method is tested through its application to the 
symmetric stretching of HF, H20, (2B1) NH2 and the singlet-triplet gap in C H  2. 

Comparison is made with other methods, including full CI. The results show that 
the current method is quite promising. 

Key words: Valence bond '° theory-  Biorthogonal representation- Dynamic 
correlation 

1 Introduction 

In a recent paper [1], a valence bond (VB) approach based on nonorthogonal 
orbitals in a biorthogonal'representation was presented. While the scheme ~ suffers 
from the lack of a variational bound, it was shown that with a suitable 
optimization of the orbitals reliable molecular wavefunctions could be obtained. 
The idea of using biorthogonal basis sets in molecular calculations was first 
proposed (and applied) by Moshinsky and Seligman [2]. The exploitation of this 
approach in VB calculations was considered by Cantu et al. [3] and Seligman [4], 
and applied to some model problems by Norbeck and McWeeny [5]. More 
recently, Li and Paldus [6] have discussed the use of such an approach but 
conclude that while being " ... very attractive theoretically, is very limited in its 
practical exploitation." Yet the conclusions of [1] contradict this suggestion. It is 
the purpose of this work to show that the biorthogonal valence bond (BOVB) 
method is capable of providing not only good quality zeroth-order wavefunc- 
tions (as in [1]) but also of yielding reliable estimates of the dynamic correlation 
energy. 

In the following section a brief overview of the background theory is given 
emphasizing its origin in the "method of moments" and detailing some 
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computational considerations. After this, some discussion is given to the choice 
of reference space and the method is illustrated by application to the stretching 
of HF and H20. To reduce the dimension of the secular problem, a configura- 
tion selection criterion is given and tested by application to the stretching in HF, 
H20, (2B1) NH2 and the singlet-triplet gap in C H  2. A comparison is made with 
other commonly used methods. 

2 Theory 

It is useful to begin by considering the wavefunction in the familiar expansion 
form: 

7 j = ~ CM¢M (1) 
M 

In the limit of a complete set, {0 }, 7 ~ is exact and the Schr6dinger equation may 
be written: 

(ItI - E)~ff = ~ CM(~I  -- E )OM = 0 (2) 
M 

Taking scalar products from the left with the members of an alternative com- 
plete set, {~}, yields the infinite system of equations: 

Z <  IHI N>CN = E2 < MI N>CN (3) 
N N 

which can be used to determine the coefficients, CN. The members of the set {~}, 
need not be specified yet, but will be chosen to simplify the calculation. 

Since complete sets are used, Eq. (3) is formally exact. Approximations are 
obtained when a subset of {~} are chosen as VB structures defined over 
nonorthogonal orbitals and the series is truncated. Equation (3) may then be 
written in matrix form as: 

~IC = SCE (4) 

where the matrix elements are: 

= < IHIO >, gMN = < IO > ( s) 

In general Eq. (4) is not equivalent to the secular equations obtained from the 
variation meth@, and its eigenvalues are not variational upper bounds to the 
eigenvalues of H. 

This approach' was first used in quantum chemistry by Boys and Handy 
[7, 8]. Boys [7] also provided a rigorous analysis of the error in the energy. BZ 
defining error vectors as the difference between the left and right eigenvectors C 
and C of Eq. (4) and the hypothetical eigenvectors Coo and Co that would 
correspond to the solution of the Schr6dinger equation in a complete basis: 

z~ = d - d~ (6) 

A = c - coo (7 )  

Boys showed that the error in the energy is proportional to an error parameter 
that is defined as: 

= ( 3 .  K)'/2(~ • A) 1/~ = 1311AI (8) 
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The significance of this is that the error contains no terms in 171 and [A] alone, 
but only in their product. Hence, if the set {0} is a good set to fit the exact 
eigenfunction 7*, then IA[ will be small and an accurate energy will result since it 
will not depend too heavily on the set {~}. However, it is not possible to state 
that the errors will systematically decrease as the set {¢} is extended, although 
it may be expected that [zi I ]A l will not increase and will most probably decrease 
such that a reasonable convergence will be obtained. 

It now remains to specify the form of the set {~}. The main difficulty in VB 
calculations arises from the use of nonorthogona ! orbitals in constructing 
many-electron wavefunctions. This leads to the well-known N! dependence of 
matrix elements (where N is the number of electrons). In the BOVB approach, 
the function ~g  is chosen as a VB structure (exactly as is OM), except that the 
orbitals used in its construction belong to a 'dual' set defined by [1]: 

= l ~ r  = 4 8  - 1  (9) 

where S is the orbital overlap matrix. The two sets of orbitals {~} and {~} 
exhibit a biorthogonality property: 

<4;i J~j> =~,j (lO) 
Hence, for every element <IltMIHlt/IN> in a conventional VB calculation, which 
contains overlap integrals (qS~ [¢j), the corresponding element (q7 M I/~ION > will 
contain the biorthogonal overlaps in Eq. (10) and may consequently be evalu- 
ated just as though the orbitals were orthonormal. The matrix elements in Eq. 
(4) now become: 

<d~IHION> = 2- <7[ f i l J>~2 ~ + Z (D[~/)r~Y (11) 
ij ijkl 

where h contains the usual one-electron operators: 
1 nuclei Z A  

/ ~ ( i ) = - ~ V  2 -  Z - -  (12) 
A riA 

and 

<71wIJ> = f ¢-~(1)*/~ q~j(1) dr 1 

(Z)I~Z) = f q;i(1)*&(2)* ~r,2 q~j(1)¢l(2) dr 1 dr  2 

(13) 

r denotes the spatial variable and the integrals over the one- and two-electron 
operators have the dual basis to the left and the primary basis to the right of the 
operator. The 7~ u and F ~  N are the one- and two-electron vector coupling 
coefficients, respectively, and may be obtained by a variety of techniques 
[6, 9, 10]. All matrix elements in the current investigation were obtained over 
Rumer functions using superposition diagrams [11, 12, 13] and the non-hermi- 
tian generalized eigenvalue problem (Eq. (4)) was solved using the modified 
Davidson procedure of Rettrup [!4]. 

When building the hamiltonian matrix elements it is useful to exploit the 
limited symmetry of the vector coupling coefficients [ 15]: 

~j~, = ~,~N (15) 
and 

r ii~,f = r ij~v ( ! 6) 
f 

(14) 
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Finally, in performing the transformation of the one- and two-electron integrals 
to the dual basis: 

( ' i f[J) = Z Ta~ ( a f [ j )  (17) 
a 

(O]~cl) = ~ LiTb~(ajlbl) (18) 
ab 

it should be noted that the usual eight-fold symmetry associated with two- 
electron integrals (when evaluated over real orbitals) is lost. There is now only 
a two-fold symmetry: 

d)l?k) 
 (Uk) 

(19) 

3 Choice of reference space 

In the BOVB approach, the orbital space is partitioned into three sets. The 
details of how this partitioning may be obtained have been given in [1]. Briefly, 
the first set comprises a core of doubly occupied orbitals which are chosen to be 
orthogonal amongst themselves and to all other orbitals• The second consists of 
the valence space in which the orbitals are nonorthogonal within the set but 
orthogonal to all other orbitals The third set is the virtual space and is chosen 

• . * / 

to consist of those orbxtals, orth0gonal to the occupied orbitals, which remain• 
As shown in [1], the perfect-pairing (PP) approximation (in which a single 

spin-coupling scheme is imposed on the electrons) is often very good and leads 
to relative energies which are very similar to those obtained by the CASSCF 
method. Yet the latter requires a full configuration interaction (CI) calculation 
to be performed in the valence space. While the PP approximation yields very 
good zeroth-order wavefunctions, it has been found to be a poor choice as a 
reference function for evaluating the dynamic correlation energy in the BOVB 
method• In some preliminary calculations using the present method, it was found 
that a wavefunction formed from all single and double replacements of the PP 
structure gave very good estimates of the correlation energy at long bond 
distances, but violated the variational bound at shorter distances. As shown by 
Norbeck and McWeeny [5], convergence of the BOVB wavefunction can be from 
below as well as above the limiting result• 

At shorter distances the magnitude of the correlation energy is greater and 
excitations from the PP structure alone do not provide enough flexibility to 
describe the dynamic electron correlation. The solution to this problem is to 
expand the reference space. In the first instance this was done by including in the 
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reference space all spin-couplings corresponding to the same spatial configura- 
tion as the initial PP structure. This spin-coupled wavefunction showed a 
marginal improvement, but still exhibited the same problem at short bond 
distances. 

Goddard has shown [e.g. 16] that in defining correlation consistent wave- 
functions based on strongly-orthogonal PP (SOPP) orbitals, the use of a 
reference expansion in which each spin-coupled pair in the PP structure is 
allowed to have all three possible occupations (for two electrons distributed 
among the given pair of orbitals) and the total expansion obtained by taking 
the direct product of all such structures,_ does provide a reliable reference set. 
This leads, for P pairs, to a total of 3 ~ configurations and is termed a restricted 
CI (RCI) by Goddard. The RCI allows interpair correlation (ionic configura- 
tions) in which the movement of charge in one bond pair is correlated with 
simultaneous movement of charge in adjacent pairs. The RCI energy will be 
identical to the BOVB energy for a single spin-coupled pair. When there is 
more than one pair, the RCI energy will be slightly lower than the BOVB 
energy. The reason for this is that by taking direct products of the single 
excitations within pairs, a subset of the double excitations is being included in 
the reference set. Accordingly, when single and double excitations are generated 
from the RCI set, a component of the triple and quadruple excitations (relative 
to the PP structure) is included. These serve to improve the estimate of the 
correlation energy and avoid the violation of the variational bound. A factor 
which makes this approach much more appealing than a CASSCF type expan- 
sion is that the RCI wavefunction grows much more slowly in size than does 
the CASSCF. 

All calculations reported in this paper were performed with an RCI type 
reference function from which all single and double replacements were gener- 
ated. As will be shown in the following section, this leads to a consistent and 
reliable dynamically correlated wavefunction at all geometries. 

4 Application - Stretching of HF and H 2 0  

To begin, the method outlined above was applied to the stretching of HF and 
H20, the results were then compared with full C1 calculations in a double-zeta 
plus polarization (DZP) basis taken from the literature [17, 18]. All one- and 
two-electron integrals were evaluated using the standard procedures imple- 
mented in GAUSSIAN 90 [19] and passed to the BOVB program. 

The wavefunction for hydrogen fluoride was taken to be: 

~ = d [ ~  1 ~ 4, 22 ~ 32 qs 4 2 ( ~ / ~ B ~ / ~ ) 4 5  ~6(~/~ - ~ ) ]  (20) 

where the orbitals q51 -(~4 correspond to a core of doubly occupied pairs on 
fluorine and orbitals q55 and q~6 describe the H F bond ( d  is the usual 
antisymmetrizer). Table 1 shows the results obtained at the equilibrium bond 
length of 0.917 ~ and also at 1.5Re and 2 R  e. The BOVB orbitals were obtained 
by full optimization [1] of the function in Eq. (20). The BOVB + SD results 
correspond to single and double replacements from an RCI reference set built 
from q55 and q~6- As in [17] the ls orbital on F was kept frozen. 

The water molecule contains 10 electrons, 6 of which constitute lone pairs 
on oxygen and are considered to provide the core, while the remaining 
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Table 1. Total and relative energies (au) obtained with DZP basis [17, 18] 
for HF and H20 compared with full CI 

J. J. W. McDouall 

HF 
R e 1 . 5 R e  2 R  e 

BOVB + SD - 100.244604 - 100.154136 - 100.075653 
Full C1 - 100.250969 - 100.160393 - 100.081108 

H20 
R e 1 . 5 R  e 2 R  e 

BOVB + SD -76.250961 -76.066210 -75.945164 
BOVB + SD' -76.251066 -76.066589 -75.948419 
Full CI -76.256624 -76.071405 -75.952269 

AE(BOVB ÷ SD) - AE(Full CI) 
2 R  e - 1 . 5 R  e 2 R  e - R e 1 . 5 R  e - R e 

HF -0.000802 -0.000910 -0.000107 
H20 0.001910 0.001441 -0.000468 
H20' -0.000967 -0.001709 -0.000742 

4 electrons make up the two O - H  bonds. The BOVB wavefunct ion was chosen 
to be: 

~ I I H 2 0  = f f [ ( O 2 ~ ) 2 ~ k 2 ( O ~ f l O ~ f l O ~ f l ) ~ ) 4 ~ ) 5 ~ O 6 ~ ) 7 ( O ~ f l  - -  f lO~)(O~fl - -  flO~)] (21) 
It  is also possible to introduce a second spin pairing: 

7/h2 o = d [ ( g z d p z q s ~ ( c ~ f l e f l ~ f l ) ( ~ 4 q 5 6 ~ s ( ~ v ( C ~ f l  - f l e ) ( c ~ f l  - fie)] (22) 

where the valence orbitals on oxygen are spin-coupled together and the valence 
orbitals o f  the two hydrogen atoms are spin-coupled together. The results are 
again shown in Table 1, the BOVB + SD entry corresponds to an R C I  generated 
f rom (21) alone, while BOVB + SD'  refers to the same augmented.wi th  (22). As 
in [18] the ls orbital on O was kept frozen and R e  = 1.000 ]~, H O H  = 104.5 °. 

In no case does the BOVB 4- SD energy violate the variational bound.  With  
respect to total energies, the BOVB 4- SD results are no more  than ~ 6 mHar t ree  
above full CI. More  importantly,  in predicting relative energies the BOVB 4- SD 
results are no more  than ~ 2 mHar t ree  away f rom the full C1. 

While these results are very encouraging, it must  be borne in mind that  the 
calculations presented so far are based on a matrix element driven CI procedure,  
and as such will not  be applicable to large molecular systems since it is difficult 
to treat more  than O(104) configurations by such a process. It  is possible to use 
a direct CI  approach  [15], but  not  for the choice o f  spin eigenfunctions used 
here. However,  matrix element driven CI  techniques have been successfully 
applied by the groups o f  Buenker [e.g. 20] and Davidson  [e.g. 21]. These rely on 
the use o f  configurat ion selection and extrapolation. In  adapt ing such techniques 
to the BOVB method,  a number  o f  Davidson- type corrections for  higher 
excitations were tested and abandoned,  since they were found to behave errati- 
cally in the present case. However,  considerable success was achieved with 
configurat ion selected CI expansions. 
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5 Configuration selection 

Let the configuration expansion be separated into two sets, the first correspond- 
ing to the reference function and the second to the single and double replace- 
ments obtained from the first. Denoting these as ~go and 7~1, respectively: 

~o = ~ CK0/( {K e reference space} (23) 
K 

Itll = 2 CS1¢¢S {S e secondary space} (24) 
s 

The reference energy is given by: 

E o - (25) 
< oleo> 

Applying perturbation theory, at second-order the contribution to the energy 
from a secondary space configuration, 0s, is: 

Ags (<~°IHIOs>- E°<g°IOs>)(<~slHI~°>- E°<~sI~°>) (26) 
= E o -  < xlHI0,> 

where ku 0 is given by Eq. (23). This type of criterion has been widely used for 
configuration selection [22]. If  AEs is found to be below a given threshold, Os is 
removed from the configuration list. In the non-hermitian case, Eq. (26) does not 
always provide a sufficiently sensitive test of the contribution of Os, unless very 
stringent thresholds are chosen. In the present work a more pessimistic selection 
criterion was adopted: 

AWx lnlos>-- (27) 
- E0 - < Ts I g l 0 s  > 

This proves to be a good test in reducing the dimension of the secular problem, 
while still giving reliable energies when thresholds of 10-5-10 -6 are used. 

6 Application - Stretching of HF, H20,  (2B1) NH2 
and the singlet-triplet gap in C H  2 

To test the selection procedure outlined above, calculations were repeated for 
HF and H20 using a selection threshold of 10 -6 (all reference configurations 
and single excitations were retained). The same procedure was also applied to the 
symmetric stretching of (2B1) NH2 and the singl,et-triplet gap in CH2. 

The wavefunction for NH2 ( R  e = 1.024 A, HNH = 103.4 ° [17]) was taken to 
be 

where the core orbitals ~b I and ~b 2 correspond to the ls orbital on N and the 
inplane lone pair, respectively. Orbitals ~b3-q56 describe the N - H  bonds and q57 
is the out-of-plane singly occupied orbital. ~1 was kept doubly occupied as in 
[17]. The BOVB orbitals were obtained by full optimization of the function in 
Eq. (28) and the RCI was built from ~b3-q~6. The results are shown in Table 2, 
the BOVB + SD entry corresponds to an RCI generated from (28) alone, while 
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Table 2. Total and relative energies (au) obtained with DZP basis[17, 18, 23] 
for HF, H20, (2B1) NH 2 and CH 2 using configuration selection with a 
threshold of 10 -6  compared with full CI 

HF 
R~ 1.5Re 2R e 

BOVB + SD - 100.243343 - 100.153558 - 100.075085 
Full CI - 100.250969 - 100.160393 - 100,081108 

H 2 0  
R e 1 . 5 R  e 2 R  e 

BOVB + SD -76.250341 -76.065857 -75.944696 
Full CI -76.256624 -76.071405 -75.952269 

NH2 
R e 1.5Re 2R e 

BOVB + SD -55.738194 -55.600292 -55.492491 
BOVB + SD' -55.738193 -55.601922 -55.503170 
Full CI -55.742620 -55.605209 -55,505524 

CH2 
2B 1 1A 1 E(1AI) - E(3B1) 

BOVB + SD -39.042491 -39.023353 0.019139 
Full CI -39.046260 -39.027183 0.019077 

AE(BOVB + SD) - AE(Full C1) 
2 R  e - -  1 . 5 R  e 2 R  e - -  R e 1 . 5 R  e - R e 

HF -0.000812 -0.001603 -0.000791 
H20 0.002025 0.001290 -0.000735 
NH 2 0.008116 0.008607 0.000491 
NH~ -0.000933 -0.002074 -0.001140 

E(IAI)  - E(3BI) 
CH 2 0.000062 

B O V B  + S D '  refers to the same augmented  with the four other spin-couplings 
possible using the valence orbitals ~b3-q57. 

Finally,  the wavefunct ions for CH2 ( 1 A I : R e  -- 1.116A, H C H - -  102.4 °, 
3B 1 : R e = 1.082 ~ ,  H C H  = 132.4 ° [23]) were taken as 

3 I//CH 2 = ~ [ ~  2 (0~/~)(~ 2 q~3 (~4 q~5 (~]~ - -  /~00(~]~ - -  ~00~64])7 (0~00] ( 2 9 )  

IllYJCH 2 = ~[(~21 (~]~)424344~bs(~6(~7(~/~ - -  ~ ) ( ~ ] ~  --/~(~)(~]~ - -  ~ ) ]  ( 3 0 )  

where qS~ is the ls  orbital  on C (kept doubly  occupied). Orbitals  qSz-~b 5 describe 
the C H bonds  and (~6--~7 conta in  the remaining  two electrons. Table  2 shows 
the results for all systems. 

As before, the BOVB + SD energy does n o t v i o l a t e  the var ia t ional  b o u n d  in 
any of the cases studied. The discrepancy with the full CI results are little 
changed as a result of  configurat ion selection. The NH2 results show the 
impor tance  of including other spin-couplings at long bond  distances. 
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To put these results into perspective, it is useful to compare them with other 
'popular' computational schemes, namely: SDCI, SDCI + Q, MRCI, MRCI + Q, 
MP2, MP4(SDQ), MP4(SDTQ), CCSD, C C S D + T ,  C C S D T - 1 ,  QCISD, 
QCISD(T). Definitions of these models as well as results in the same basis set as 
that used here may be found in [17-18,23-25]. The errors in the total 
BOVB + SD energies have already been stated and the errors in the methods 
above have been discussed in the literature cited. For chemical problems, the main 
interest lies in relative energies. Table 3 shows the mean absolute error ~n the 
relative energies compared with full CI for the stretching of HF, H20 and (2B 0 
NH2 (averaged over all bond distances considered). Finally, the results of the three 
molecules are averaged and the methods arranged in ascending order with respect 
to error. The BOVB + SD results perform well (it should be kept in mind that 

Table 3. Mean absolute error in relative energies (au) compared with 
full CI (see text), averaged over 2 R e - - R e ,  2 R e - I . 5 R  e and 
1 . 5 R  e - R e 

Method HF H 20 NH 2 

SDCI 0.012130 0 . 0 4 1 8 7 4  0.040102 
SDCI + Q 0.001925 0 . 0 0 5 2 9 1  0.005635 
MRCI 0.000459 0 . 0 0 0 8 4 6  0.001296 
MRCI + Q 0,000683 0 . 0 0 0 4 3 6  0.000517 
MP2 0.010826 0 . 0 2 7 1 3 4  0.030532 
MP4(SDQ) 0.006508 0 . 0 1 9 8 4 7  0.024776 
MP4(SDTQ) 0 . 0 0 3 4 0 2  0 . 0 0 9 2 9 4  0.024886 
CCSD 0.004782 0 . 0 1 1 5 2 1  0.005396 
CCSD ÷ T 0.001373 0 . 0 0 5 3 9 2  0.004532 
C C S D T -  1 0.000213 0 . 0 0 3 0 9 1  0.003985 
QCISD 0.003885 0 . 0 1 1 6 6 8  0.005266 
QCISD(T) 0.000760 0 . 0 0 2 0 5 0  0.004588 
BOVB + SD 0 . 0 0 0 6 0 6  0 . 0 0 1 1 3 9  0.001382 
Full CI 0.0 0.0 0.0 

Mean error (au i averaged over HF, H20 and (2B1) NH2, in ascend- 
ing order. 

Method A E  

Full CI 0.0 
MRCI + Q 0.000545 
MRCI 0.000867 
BOVB + SD 0.001042 
CCSDT-I 0.002429 
QCISD(T) 0.002466 
CCSD + T 0.003765 
SDCI ÷ Q 0.004283 
QCISD 0.006939 
CCSD 0.007233 
MP4(SDTQ) 0.012527 
MP4(SDQ) 0.017043 
MP2 0.022830 
SDCI 0.031368 
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the MRCI expansions referred to in Table 3 use a CASSCF type reference and 
as such yield a much larger secular problem than the BOVB + SD calculations). 

7 Conclusion 

It has been the purpose of this study to show that the BOVB method provides 
a viable scheme for performing VB calculations in a nonorthogonal basis. The 
VB-CI procedure described here is made much less demanding by the elimination 
of configurations, as described above. The problem of an energy functional that 
is not bounded from below has been shown not to be troublesome. The current 
program is being developed to enable a wider range of systems to be studied and 
a number of perturbation schemes are being investigated to simplify the VB-CI 
procedure further. 
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